Question -

If the coefficients of x^3 and x^4 in the expansion of $(1 + ax + bx^2)(1 - 2x)^{18}$ in powers of x are both zero, then (a, b) is equal to

(a)
$$\left(16, \frac{251}{3}\right)$$
 (b) $\left(14, \frac{251}{3}\right)$ (c) $\left(14, \frac{272}{3}\right)$ (d) $\left(16, \frac{272}{3}\right)$

Ans - D Solution -

To find the coefficient of x^3 and x^4 , use the formula of coefficient of x^r in $(1-x)^n$ is $(-1)^{r} {}^n C_r$ and then simplify.

In expansion of $(1 + ax + bx^2)(1 - 2x)^{18}$.

Coefficient of
$$x^3$$
 = Coefficient of x^3 in $(1-2x)^{18}$
+ Coefficient of x^2 in a $(1-2x)^{18}$
+ Coefficient of x in $b(1-2x)^{18}$
= ${}^{18}C_3 \cdot 2^3 + a$ ${}^{18}C_2 \cdot 2^2 - b$ ${}^{18}C_1 \cdot 2$

Given, coefficient of $x^3 = 0$

$$\Rightarrow \frac{^{18}C_{3} \cdot 2^{3} + a^{18}C_{2} \cdot 2^{2} - b^{18}C_{1} \cdot 2 = 0}{\Rightarrow -\frac{18 \times 17 \times 16}{3 \times 2} \cdot 8 + a \cdot \frac{18 \times 17}{2} \cdot 2^{2} - b \cdot 18 \cdot 2 = 0}$$
$$\Rightarrow 17a - b = \frac{34 \times 16}{2} \qquad ..(i)$$

Similarly, coefficient of $x^4 = 0$

$$\Rightarrow \ ^{18}C_4 \cdot 2^4 - a \cdot ^{18}C_3 2^3 + b \cdot ^{18}C_2 \cdot 2^2 = 0$$

$$\therefore \qquad \qquad 32a - 3b = 240 \qquad \qquad ... (ii)$$

On solving Eqs. (i) and (ii), we get

$$a = 16, b = \frac{272}{3}$$